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Abstract

This thesis identifies the mean orbital elements which produce arcs
of minimum altitude variation over an oblate planet with an
axi-symmetric gravitational field. Such orbits are useful for
surveillance or scientific study missions using optics with fixed focal
lengths.

Both Earth and Mars are considered and the optimum eccentricity is
found as a function of argument of periapsis and inclination for two
values of semi-major axis for each planet. The results are curve fit
to develop a single equation which identifies the eccentricity needed to
produce an arc of minimum altitude variation given the argument of
periapsis, inclination, semi-major axis, ellipticity of the planet,
equatorial radius, and the zonal J2‘

Once arcs with minimum altitude variations are identified, the
properties of the arcs are considered. The mid-latitude, altitude,
duration, and latitude range of the arcs are found as a function of
argument of periapsis and inclination for various planet and semi-major
axis combinations.

The secular change in mean orbital elements is considered to
determine the most stable orbits. Secular changes in orbital elements
due to the geopotential, drag, and third body effects are considered.
The velocity impulse needed to return the satellite to the original
orbit from the perturbed orbit is found and used to determine stability.
Identifying orbits which require minimum station keeping fuel allows

planners to select orbits permitting longer useful operational life.

xii




ORBITS CONTAINING ARCS OF MINIMUM ALTITUDE VARIATION

I. Introduction

Background

Mean orbital elements may be determined to produce orbits about an
oblate planet which contains arcs of constant altitude[6]. The arcs of
constant altitude may be positioned over specified latitude ranges --
this ability is useful for surveillance or scientific study missions
using optics with fixed focal lengths. This thesis focuses on finding
orbits with arcs of constant ellipsoidal altitude for axi-symmetric
planets (only zonal harmonics are considered in the geopotential).
Because of these restrictions, the longitude of the ascending node is
not considered as a variable. Given the required orbit, arcs of nearly
constant altitude may be identified. The eccentricity becomes a
function of the required inclination, argument of periapsis, semi-major
axis, and planet parameters (ellipticity, equatorial radius, and
geopotential). The independent variables are also functions of the
desired altitude and latitude of the arc.

Mean orbital elements which produce stable orbits need to be
considered. Missions requiring these types of orbits will typically
have low altitudes, so drag needs to be addressed. Kalil [6] presents
a first order analysis neglecting drag. Drag primarily affects
eccentricity and semi-major axis; consequently, it can’t be neglected
for missions longer than one orbital period. The change in semi-ma jor
axis due to drag will act to reduce the altitude of the arc of constant
altitude in a few orbits. Eventually, reducing the semi-major axis will

result in an orbit which no longer contains an arc of constant altitude;




however, the orbit is much more sensitive to a change in eccentricity,
inclination, or argument of periapsis -- as the drag reduces the
eccentricity, the resulting orbit will no longer contain an

arc of constant altitude.

Definition of Constant Altjitude Arc

A constant altitude arc is defined for the purpose of this thesis
as a portion of an orbit during which the ellipsoidal altitude of the

satellite changes only slightly with time.

Objective

Mean orbital elements of orbits containing constant altitude arcs
are identified for both Earth and Mars. The planets’ ellipticity, zonal
harmonics up to the third order, atmospheric drag, and third body
effects are considered. For a given planet, the required orbital
elements are identified to achieve a desired altitude at a given
latitude. Secular changes in the mean orbital elements are then

considered in order to locate the most stable orbits.

Approach

A search method is employed to determine the eccentricity, as a
function of argument of periapsis and inclination for several cases
(varying the following parameters: planet, semi-major axis, and the
perturbative accelerations considered). First, the two-body problem is
considered and an empirical relationship is developed which determines
eccentricity as a function of argument of periapsis and a

non-dimensional grouping of ellipticity, equatorial radius, inclination,




and semi-major axis. Next, additional perturbative accelerations are
addressed [1,2,8,13,17]. For the short term considered (one period),

the J, term of the geopotential causes the most significant change. An

2
empirical relationship to predict the change in eccentricity from the
two-body results is determined as a function of argument of periapsis
and a non-dimensional grouping of J2, inclination, semi-major axis, and
the equatorial radius.

The choice of w, i, and a which minimizes secular variations is
then considered. Secular perturbations due to third bodies[7], zonal
harmonics up to sixth order[12], and atmospheric drag (including a
rotating atmosphere{16]) are addressed. The sum of the velocity
impulses needed to correct the secular changes in the orbit caused by

perturbations is calculated and used in identifying the most stable

orbits.




I1. Theory

s 11 Mot i

In order to determine orbital elements of orbits which contain arcs
of minimum altitude variation, the motion of the satellite must be know.
Kepler identified satellite position and velocity under the influence of
a central body modeled as a point mass. This two-body solution
identifies the position of the satellite using the six classical orbital
elements (semi-major axis (a), eccentricity (e), inclination (i),
argument of periapsis (w), longitude of the ascending node (Q2), and true
anomaly (v)) . Perturbations from two-body motion due to small
accelerations may be calculated. Averaging the change in orbital
elements over one period eliminates periodic short term variations [153].
The secular changes in orbital elements identify changes which must be
corrected to return the satellite to the original orbit. This section
will present two-body motion and perturbations from the two-body motion
due to non-spherical gravitational fields, third bodies, and atmospheric
drag. The secular changes in classical orbital elements will be
presented for each perturbing acceleration considered.

The equations of motion presented in this section will be evaluated
with various combinations of classical orbital elements to identify
combinations of elements which produce orbits with minimum altitude
variation arcs.

The secular variations of classical orbital elements presented in
this section will be evaluated for orbits containing arcs of minimum
altitude variation and will be used to determine the velocity impulse

required to maintain the satellite in the desired orbit.




Equation (1) may be solved to determine the position and velocity

of a satellite

T - -9W-=3 (1)

where a is the sum of accelerations acting on the satellite and V is the
potential function. The two-body solution and perturbations from
two-body motion due to a non-spherical gravitational field, third body,
and drag will now be presented.

Two-Body Motion. For two-body motion, equation (1) may be

rewritten by recognizing VV = p/r2

(2)

R,
+
la]
Wl
i
o

where r is the position of the satellite, and g is the product of the
universal gravitational constant and the mass of the planet. Equation
(2) may be solved to provide the satellite’s distance from the center of

the planet. Equation (3) presents Kepler’s equation:
2
r=a(l - e )/[1 + e cos(v)] (3)

Where r is the distance from the center of the planet, a is the
semi-ma jor axis of the orbit, e is the eccentricity, and v is the true
anomaly.

Geopotential. The geopotential function for a spherical
gravitational field is -u/r . The geopotential function for a

non-spherical gravitational field is presented in equation (4) [1]
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i Z Z Vo (4)
£=0 m=0
b 2 .
uR Cpp COSH + S, sind  2-m even
Vem = T L Z F, (i) 5
r P -Syp cosH + C, sind  £-m odd
p=0
where
tmax
F, (i) = }: (2£-2¢)! L Aeme2t
i t0p t! (£-t)! (£-m-2t)! 22(2-t)
m g,
. °i _1y8°k [2-m-2t+s m-s
X Z [S] cos i Z (-1) [ . ] [p-t-g] 6)
s=0 &=81
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H = (1-2p)(ar+u) + m(g+9g)

P, psk
tmax =
k , p>k

- [

By considering only zonal harmonics, equation (6) may be simplified:

8

(7)




RE k
s E: (24-2t)! sinf 2t
20 O 1 (2-t)1 (g-2t)1 22¢4T)
t=0
£-2¢
2-2¢t k+c cos(2-2t-2¢c) (wtv) £ even
X }; [ c ] (-1) [ sin(!-2t-2¢)(w+v)] £ odd (8)
c=0
where
2
- 2]
Recognizing

COSX = COS-X
-sinx = sin-x
and defining J, as -C,, results in further simplification of

equation (8).

& K
Vo= —&_ 3 }; (2£-2t)! cink-2t;
0 B L e (e (ae2eyr 228D
2p t
p ] (-1) . §: [2p] ( 1)k+c cos[(2p-2¢ ) (wtv)] 9
X )
2 2";1] -1 siner) L2 LC sin[ (2p-2c+1) (whv) ]

where the top choices in equation (9) are used when £ is even, bottom
choices are used when £ is odd, and p = k-t
Merson [12] has averaged the perturbations due to zonal harmonics

over one period, his results are presented in equations (10) and (11).

The equations for change in argument of periapsis (w) and longitude of
ascending node (Q}) are not valid if the inclination (i) is zero; also,
the equation for change in argument of periapsis is not valid if the

eccentricity (e) is zero.




For semi-major axis:

Aa - -(18/4)nJ22R4a'3(1-e2)'5esinw(1+ecosw)2(4-ssin21) (10)
Changes in the other orbital elements are described by equation (11)
where Ax represents either Ae, Ai, Aw, or Af; xk represents ek, ik' @

or Ok (k = 2,3,4,5,6); and x represents €5y 122, Wyps OT 922. For

22
example, to calculate the secular change in eccentricity over one
period, replace Ax with Ae, Xy with ey and X9 with €59 in equation

(11). The equations used to calculate the variables in equation (11)

are presented below for each orbital element.
ax = 2x(T3 (R/p) % + 3,2 (R/p)x, . ] (11)
kPN X TSy (B/P) %)

For eccentricity:

e, = 0

ey = - % (1-e2) sini cosw (A-Ssinzi)

e, = - a2 (1-e’)(6-Tsin’i)sin’i e sin2e

eg = 7%% (l-ez)sini[(8-24sin21+2151n41)(8+6e2)c05w
+ 7(8-9sin21)sin21 e2 cos3w]

e - g%%é (1-e2ysin?i[(16-48sin2i+33sin®i)(10+5e2)sin2w
+ 3(10-llsin21)sin21 e3 sinbw]

ey = T2 sinw[6(4-5sin?i)(l+ecosw)’

sinZi(1-e2)((16-20sini)-(14-15sin%i))ecosw]




For inclination:

e cOoSsi cosw (A-SSinzi)

[

w
]
t

oo}

Nt

= - T%— e2(6-7sin21)sin21 sin2w
i = - E%% e cosi[(8-2451n2i+2lsin41)(8+6e2)COSw

7(8-95in2i)sin21 e2 cos3w)

+

525

iy = - 5202 e sin2i ((16-48sini+33sin”i)(10+5¢2)sin2w

3(10-11sini)sin?i e> sinkw]

+

iy, = g% sin2i [(32-40sin’i)e sinw)

(-14+1551n21)e2 sin2w]

+

For longitude of the ascending node (ix0):

0, = -(3/2)cosi

Q, = (3/8)(4-15 sin’i) e sinw coti

a, - %% cosi(4-Tsin%i)(6+9e2)-3(6-14sin’i)e’cos2w]
a, - 5%% coti[(8-84sinZi+33sin”i)(8+6e2)e simnw

+ 7(8-15sin%i)e’ sin3w]

105 2

4
6 " 10,240 +15e7)

cosi[10(8-36sin2i+33sin®i)(8+40e

- 25(16-96sin2i+99sin”i) (4+2e2)elcos2w
- 15(20-3351n2i)sin21 ea coséw]

022 - (3/32)cosi[(12-8051n21) + 16(4-1051n21)ecosw
+ (-4-5sin’i)e? + 2(-7+15sin’i)e’cos2w]




For the argument of periapsis (i=0, ex0):

(3/4)(4-5sin%i)

(4)2 -

-1 . .. . 2. 2, 2.,.2
wy = (3/8)e “sinwsini{(4-5sin”i) + (35cos”i - 4cosec”i)e”]
w, = - %2[(16 6251n21+4931n i) + (651n21 751n41)c052w

+ (18 - 63sin2i + l%gsinai)e2
+ (-6 + 35sin’i - Bsin‘i)e’cos2u]
w = l-Qée-lsinwcoseci - + ZSinzi - ésinai sinzi
5 16 7 2
4 87 . 2. 67 . 4. 357 . 6.) 2
7 - —gsin"i + S3sin’i - Tgsinife
+ [-1 + §sin21]sinai e2c052w
+ [% - 7sin2i + g%%sinl‘i - l%%sinsi]ea

+ [1 - 39sinzi + 2%sin"i]sinzi e2 cosZw]

w - ———[%[1 - 85in21 + lggsinai - 23251n61]

+ [2 - 65in21 + é%sinai sinzi cosZw]

+ 6[1 - 2%sinzi + l%gsinai - l%lsin61]e2

S N Eh oA O oS G oG B BN OE O am W
+

+ [-2 + 2551n21 - éggsinai + égésin6i]e2c052w
+ %[ 1 - %%51n21]sinai e2 cos4w

+ 2[- g%sxnzl + 2%31 4 . é%%sin6i]e4

+ [ 1+ 2%sin i- 3?251 a%gsin 1]e cos2w

gzsinzi - l%%nnl‘l]sinzi ea cosdui

3
+§[-1 + =3
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(4 2ain2; L 5aihy
w22 4 6S ni1ir - 351n 1}le COSw
95

+ [Tisinzi - é%%sinai]+[-2 + %%sinzi + %Sinbi]COSZw

+ [-2'2‘ + %slnzl - S—gsinai]ecosw +[- % + %sinzi]ecos:}w
+ [T% - %sinzi - %%sinai]e2+[f% - %%sinzi + %%sinai]ezcos2w]

These equations will be used to determine the secular changes in
orbital elements due to perturbations caused by the geopotential. The
changes will be combined with secular changes due to third bodies and
atmospheric drag to determine the velocity impulse required to keep a
satellite in the desired orbit which contains a constart altitude arc.
Third Body. For Martian cases, perturbations due to the Sun will
be evaluated, while perturbations due to both the Sun and Moon will be
evaluated for Earth orbits. The analysis presented below is applicable
to any third body. Figure 1 demonstrates the relationship between the

central body, the satellite, and the third body.

Satell: te

T T ————-—=—Third Body

S . -

Pl anet

[ RN

Figure 1. Geometry for Third-Body Perturbations

The position of the satellite with respect to the central body is r, r'
is the position of the third body with respect to the central body, and
p is the position of the third body with respect to the satellite. The

angle between Y’ and T is S, and ; -r -

11




Equation (12) presents the disturbing function due to a third body

where the perturbing accelerations due to the third body are VR'.

. 1l r'-r
o2

Recognizing

' [l + (r/r')2 - 2(r/r')cosS]1/2

and

r'-r = r'rcosS

results in equation (13), an expansion of equation (12)

7 2 -.5
R' - —3[[1 + L cosS] ; 5—“’—55] (13)
r r,2 r r

The binomial expansion is employed to expand the first term in

equation (13)

-]

(1 + (r/r')2 - 2(r/r’)cosS]-'5 = E: [n;'s](-l)n[(r/r')z- 2(r/r')cosS]n

n=0

Neglecting terms of (r/r’) equal to or greater than third order results
in an approximation to equation (12). For the case of Earth’s moon, if
the satellite orbit remains within six Earth radii, (r/r')3 < .001. For
perturbations due to the Sun this term will be much less than unity for
both Earth and Mars. Equation (l4) incorporates these approximations to

equation (12)

12




B3 H r’ 2
R' = =5 + 3(3cos”s - 1) (14)

2r’
Substituting By = n'za'3 in equation (1l4) and observing V(p3/r')-0

results in a simplified potential equation for a third body

R’ = (azn'2/2)(r/a)2(a'/r')3(3c0525 - 1) (15)
Kaufman {7] has developed the secular change in orbital elements due to
third body perturbations. Equations (16) - (20) are the averaged change
in orbital elements for one period. Equations (18) and (19) are not

applicable when the inclination is zero.

Aa = 0 (16)
Ae = (-157) (1-e2)"° (n'/m)? eaB(a’'/r')> (17)
Al = -67 (n’/n)2 (l-ez)—'5 (siml)-1 (a'/r')3
2 2 2 (18)
X [ab(l+4e”) + Be(l-e”) - SaBe“cosi]
AQ = 67 (n'/m)2 (1-e2)7 2 (sini) Y (at/r)’
) ) (19)
X [ay(l+4e”)sinw + By(l-e  )cosw]
Mo = 67 (n'/n)2 (a'/rt)’ (1-e2)2 (20)

X {(Aaz-ﬁz-l) - (7cosi/sini)(1-e2)[a(1+4e2)sinw + ﬂ(l-ez)cosw])

A Y
where:

-0 cos{l’'cos®’
' = sinQl’cos®’
sinfl'cosd’

P = sinflcosw + cosflsinwcosi

_ cosflcosw - sinflsinwcosi
sinicosw

Q- -sinficosw + cosQsinwcosi
sinicosw

[ -cosficosw - sinfisinwcosi ]

- sinfisini
R = -cosfisini

cosi

13




[ -sinflcosw - cosfsinwcosi
P' = cosflcosw sinflsinwcosi

[ sinflcosw - cosflsinwcosi

Q' = -cosficosw - sinflsinwcosi
L J

a = —'O-F

-, 0 =
B=-1°Q
v = _'o.ﬁ
6 = —'o.-P-I
€ = ;'0-6'

Equations (16) through (20) will be used to calculate the average

change in orbital elements over one period due a third body.
Atmospheric Drag. The acceleration due to drag acts in the

opposite direction from the velocity of the satellite with respect to

the atmosphere and is modeled by equation (21):

b - v 208 (21)
where

B = CDS/Zm
and CD is the drag coefficient, S is the cross-sectional area of the

satellite normal to the velocity of the satellite with respect to the
atmosphere, m is the satellite mass, p is the atmospheric density, and
Vg is the velocity of the satellite relative to the velocity of the
atmosphere.

The atmospheric density at a given location doesn’t remain
constant, but changes due to the time of day, solar activity, and

season. Consequently, modeling the atmosphere accurately is extremely

14




difficult and the best results are obtained by employing models or
tabulated mean values which vary witb time. However, the atmospheric
density may be approximated as decreasing exponentially with increasing

altitude (see equation (22)).
(22)

where o is atmospheric density at some reference height above the
surface of the planet, z is the actual altitude minus the reference
altitude. and H is the scale height of the atmosphere.

The velocity term in equation (21) is the velocity of the satellite
with respect to the atmosphere. A technique to approximate the velocity in

terms of orbital parameters is presented [19:275-276]). Let

where V is the velocity of the satellite with respect to an inertial
reference frame with its origin at the center of the planet, Vs is the
velocity of the satellite relative to the velocity of the atmosphere,
and Va is the velocity of the atmosphere with respect to an inertial
reference frame with its origin at the center of the planet.

Assuming the angular velocity of the atmosphere (wa) is uniform
about the north-south axis results in an atmospheric velocity in terms

of the geocentric latitude (¢) and satellite radius (r).
V = rwacos¢ (24)
If ¥’ is the angle between V and Vs then

15




VS2 = V2 + Va2 - 2VVacos¢' (25)
The atmospheric velocity vector is in the local horizontal plane and the
satellite’s velocity vector is almost in the local horizontal plane.

The angle between the two vectors (¥’) may be approximated by the angle
between the projection of the satellite's velocity vector onto the local

horizontal and the atmospheric velocity vector (¥)[9]. Consequently,

using the law of cosines from spherical trigonometry,

cosy cos¢ = cosi
Va cosy' = Va cosy = rw, cosi (27)
The satellite’s velocity relative to the atmosphere may be approximated
in terms of its velocity with respect to an inertial reference frame,
orbital elements, and angular velocity of the atmosphere.
\Y 2 = V2 + vV 2 2VV_ cosy
a a
- V2 + r2wa2cosz¢ - 2eracosi

V2[1 - (rwa/V) cosi]2 + r2wa2(cos2¢ - coszi)

VS2 may be further approximated by recognizing rzwaz < .005 V2 [9]:
V52 - V21 - (rwa/V)cosi]z (28)
Consequently,
D - ppve[1 - (rw, /V) cosi)? (29)

Sterne [16] has considered secular changes in the classical orbital

elements due to a rotating atmosphere about an oblate planet. Equations

16




(30) - (34) present the secular changes in orbital elements over one

period.
, (2 523/2 E) 12
ba = - 2Ba p —2—— |1 - d—=—| dE (30)
0 1/2 E
E 2
1
5 2n 521/2 E
Ae = - 2(l-e7)Ba p ————— |1 - d———
1/2 E
E1 2
2 2 (31)
X {cosE - .Sd(El)(ZcosE-e-ecos E)/(l-e7)] dE
2.5 %% 5,2 1,2 Ey
Ai = - .5(w./n)Basini(l-e) " p E.°7%2 2 - a=
a 0 1 2 E2
-2 2 2 2 (32)
x {1 + cosZwE1 [(2-e“cos™E - 1 + 2e“° - 2ecosE]) dE
2n E
AR = - L5 (w /n)ﬂasin2w(1-e2)-'5 J P (1-e2coszE) [1 - d——l—]
a 0 E,
) 2. 2 (33)
x [2e” - 1 - 2ecosE +(2-e¢")cos E] dE
Aw = -cosi AQ (34)
where
E1 = (1 - ecosE)
E2 = (1 + ecosE)
d = (wa/n)cosi(1-e2)1/2
n = (#/83)1/2

Equations (30) through (34) will be numerically integrated to determine
the average change in orbital elements over one period due to drag.
Secular changes in orbital elements due to all the perturbations
considered will be combined to determine the total change in orbital
elements over one period. For orbits about Earth and Mars perturbations

due to the geopotential, atmospheric drag, and the Sun will be

17




calculated. For Earth orbits, the secular changes in mean orbital

elements due to the Moon will also be calculated.

Planet Geometry

In this section, the radius of an oblate planet is found as a
function of latitude. The radius is needed to calculate the ellipsoidal
altitude which is the difference between the radius of the orbit and the
radius of the planet.

Consider an axi-symmetric planet with semi-major axis (a),
semi-minor axis (b), and radius (R) as a function of latitude (¢). The
ellipticity (f) of the planet is defined in terms of the semi-major (a)

and semi-minor (b) axes as
f=1- bsa
or in terms of the planet’s eccentricity (e)
£=1-@Q -e?)d

A relationship to determine the planet’s eccentricity is presented

below,
1-e2=q -£)?

Equation (36) may be employed to approximate the planet’s radius given

the latitude and the ellipticity:

R = a[l - £ sin’p + O(£%)) (36)

18




The reasoning employed to achieve this result is presented. Consider an
ellipse circumscribed by a circle (see Figure 2). The geometry of the
ellipse dictates the relationship between the semi-major and semi-minor
axes, the eccentricity, and any point on the perimeter of the ellipse.

— el e — e
’ i

e
|
x

<

Figure 2. Geometry of Planet

—
L]

(x/a)2 + (y/b)2

ae (32 _ b2).5

Eventually, an expression for R/a as a function of ¢ must be found.
First, (R/a)2 is found as a function of E.
R2 _ x2 + y2

[a cosE]2 + [b sinE]2

(a cosE]? + [a (1 - €2) > sinE}?

a2 [coszE + sian - e2 sian]

1 - ezsian

(R/a)?
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SinE is found as a function of ¢ and length y may be expressed

in terms of the semi-major axis, eccentricity, and sinE:

R sing

<
]

= b sinE

I

a(l-e") " sink
These relationships are used to solve for sinF.
sinE = (R/a)[sing/(1 - €2)-7]
Consequently,
(R/a)? = [1 + F sin’g]
where
F=e?/a1 - e?) = (a-6)% - 1

Equation (37) presents a relationship to evaluate the radius given

the eccentricity and latitude.

1+ e2cosz¢

2 .5
R =a [ ___11;22___ ] (37)

Equation (37) will be approximated by a truncated series expansion.
series will be developed by expanding (R/a) and F using the binomial

expansion. Equation (38) presents the expansion of F.

F=-1¢%+ E:['il(-f)“

n=0 ‘
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F=Y (n+l1) £7 (38)
n=1

Equation (39) presents the expansion of (R/a):

R/a = EZ[-lgzl [F sin2¢]n (39)

Combining equations (38) and (39) results in equation (40) which
determines the radius of the planet as a function of latitude,

ellipticity, and equatorial radius.

n
['1g2] [ }:(m+1) fm1 [sinZl%] (40)
0

Truncating third order terms and higher from equation (40) results in
an approximation of the radius as a function of latitude, ellipticity,

and equatorial radius:
R=R_[(1-f sing + 1.5 £2 (sin®¢ - sinZ) + O(£)]  (41)

Consider the term (sin4¢ - sin2¢) in equation (41). Taking the

. . . R : ; o
derivative with respect to ¢ indicates optimums will occur at 0,

o

457, and 1900. The maximum error due to the second order terms will

occur at a latitude of #45°. Consequently, AR X is the maximum error

ma

which will be caused by truncating second order terms:

2
AR = - (3/8) R_£
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For Earth (Re=6378 km, £=.003352[11}) the maximum magnitude of error due
to second order terms is 27 m. For Mars (Re=3393 km, f=.005185[{11]) the

maximum magnitude error due to second order terms is 34 m.

oida] Altijtude

In this section, the ellipsoidal altitude (which is the difference
between the satellite's radius and the planet's radius) will be
developed in terms of the classical orbital elements. The radius of the
satellite is know in terms of the classical orbital elements and the
radius of the planet is expressed in terms of the latitude.

Equation (42) presents the equation for the ellipsoidal altitude
h=r -R (42)

where r is the satellite radius, and R is the radius of the planet. For
accurate evaluation equation (37) will be employed to determine R and r
will be determine by numerically integrating the satellite’s equations
of motion.

First Order Approximation. An approximation to the
ellipsoidal altitude may be found by considering two-body motion

(equation (3)) and using only first order terms of equation (41).
2 . 2
h=a(l - e)/(1 + e cosv) - Re(l - £ sin“¢) (43)

I1t’s much more convenient to know the ellipsoidal altitude as a function
of orbital elements instead of latitude; consequently, the sin2¢ term
will be rewritten in terms of classical orbital elements. Consider the
orbit presented in Figure 3 with inclination (i), argument of periapsis

(v), and true anomaly (v). Using the law of sines from spherical

22




trigonometry, results in an expression for latitude in terms of
inclination, argument of periapsis, and true anomaly.
sing/sini = sin(wtv)/sin90

sing = sini sin(w+v)

Sy BN o om

T~ — /

Figure 3. Relationship between Latitude and Orbital Elements

The ellipsoidal altitude may now be written in terms of orbital

elements.

h = (a(l-e)/(1 - e cosw)] - R_[1 - £ sini sin’(whv)] (44)

; in Ellipsoidal Altitude

The derivative of ellipsoidal altitude will be zero for the
duration of the constant altitude arc. In this section the derivative
of the ellipsoidal altitude is calculated with respect to true anomaly.

Differentiating Equation (44) with respect to the true anomaly and
employing

sin2a = 2 cosa sina
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results in an expression for the change in ellipsoidal altitude.

dh/dv = a e (1 - e2) sinv/(1 + e cosu)2 (45)

+ Re f sinzi sin[2(wtv)]

An arc of constant altitude would occur between vy and v, when

It is clear the altitude will remain constant throughout the entire
orbit if i=e=0. Also, as long as the orbital elements remain constant,
the semi-major axis only changes the altitude (not the position or
length of the arc of constant altitude). The argument of periapsis and
inclination will cause the position of the constant arc to move while
the eccentricity must be matched with the argument of periapsis and

inclination to produce an arc of constant altitude.

Relat ionship b " | Osculating Orbital El

All orbital elements presented are mean values with respect to
short term variations caused by J2. When the equations ot motion are
numerically integrated, the osculating elements are output at each time
step [18]. To determine the secular change in orbital elements, the
mean orbital elements are needed instead of the osculating elements.
The method Kwok [11], employs to transform from mean to osculating

elements is presented:

Xi - Xi' + 8Xi(Xi') (46)
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Xi’ are six mean orbital elements describing two-body motion and 6X; are

i
i
l the variations in orbital elements due to J2. Xi are the osculating
elements. Recalling r = p/(l+ecosv) ,and p=a(1-e2) the change

l in orbital elements may be calculated as functions of the mean orbital
elements.

i

81

(3/4)J2(Re/p')2 sini’ cosi’

X [cos2(v'+w’) + e’cos(v’'+2w’) + (e'/3)cos(3v’'+2w’)]

p = 2 p’' tani’ 61

50 = -(3/2)J2(Re/p')2 cosi’ [w' - M' + e'sinv’ - (1/2)sin2(v'+w’)

- (e'/2)sin(v’+3w’) - (e'/6)sin(3v '+5w’)]

6t = ~(p' /@), (R /p")° ((3cos’i’-1)

x [2r'(1-e2)/p' + e'cosv’/(1+(1-e'2)) + 1] - sin®i’ cos2(v'+w’))

5t = -(p'/4) J2(Re/p')2((3coszi'-1)e'sinw’
,2)1/2 .2)1/2]

-2 sinzi'(l + e'cosu’)zsinZ(v’+w’))

x [(l-e + (p'/r’)z/(l + (1l-e

,2.1/2

Let F' = (1-3cos2i’)/[1 + (1-e'%)1/?

§ (Viw) = (J2/8)(Re/p')2[6(1-5coszi’)(v'-M')
+ be'siny’(1-6cos?i’ + F' ) + F'e'2sin2v’
+ 2(5c0s2i’-2)e'sin(v +2w’) + (Tcosi’-1)sin2(v +w’)

+ 2coszi’e'sin(3v’+2w’) ]
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r-------------------ﬂ

Pp=7p +6p’
r=r"'+ 6ér'
=1’ + §f'
(v+w) = (v'+0') + §(v'+w")

A= (p/r) -1

(p/#)‘S r

o
1

The osculating elements may now be calculated:

i=1i" + 6i’
Q=0 + 60

e = (a2 + B2y12
v = tan'l(B/A)

a = p/(1-e%)

w= (wtv) - v

Transformation from osculating to mean orbital elements requires
iteration. First calculate the varjations as a function of the
osculating elements then solve for the mean elements. Use these new
mean elements to calculate the variations. Continue iterating until a
group of mean elements is found which satisfy equation (46) by

producing the original osculating elements.

L lsive Veloci cl Needed c Orbi
Once an orbit with a constant altitude arc which covers the correct
latitude range is chosen for a mission, secular changes to the orbital

elements will cause the location, duration, and altitude of the arc to

change. Consequently, the velocity impulse needed to negate the effects
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of the changes in orbital elements is presented. Figure 4 demonstrates
the two possible cases where the change in semi-major axis is either
positive or negative. Also shown on the figure is the change in
argument of periapsis. In practice, the optimum starting and ending
true anomalies and eccentricity of the transfer ellipse between two
elliptical orbits must be chosen to minimize the impulsive velocity
change[3:67-71]. In a Hohmann transfer, the initial and final orbits
are circular and the transfer ellipse ranges from apoapsis to periapsis.
In view of the fact that the orbits being considered are nearly
circular, the portion of the transfer ellipse used in this analysis will
arbitrarily be fixed to range from apoapsis to periapsis. When the
ratio of larger semi-major axis to smaller semi-major axis of the
initial and final orbits being considered is between O and 11.94 [3:62],
the Hohmann transfer is the transfer requiring a minimum velocity
impulse. The cases to correct for secular changes in orbital elements
result in a ratio of semi-major axes of about unity, with nearly
circular initial and final orbits. As a result, the impulsive velocity
change calculated should be near the minimum required velocity change.
The method used to determine the required velocity impulse is presented.
From conservation of energy in an elliptical orbit, the magnitude of the
velocity at any point on the ellipse may be determined by equation

(47):
V = (u(2/r - 1/a))t/? 47)

Also for an elliptical orbit, equation (48) may be employed to calculate

the angle (v) [14:83)}. Angle v is measured from the radius vector to

the velocity vector.
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Figure 4. Geometry of Transfer Orbits

siny = (l+ecosv)/(1 + e2 + ZeCOSV)I/2 (48)

cosy = -esimv/(1 + e2 + 2€COSV)1/2

Considering Figure 4, point "A" represents the point where the perturbed

orbit is initially changed to follow the transfer orbit, and point "B"
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is the point where the transfer orbit is changed to achieve the original
orbit. The semi-major axis of the perturbed orbit is the semi-major
axis of the original orbit (a) plus the secular change in the semi-major
axis over one period (Aa) and similarly the eccentricity of the initial
and final orbits are e and e+Ae respectively.

First, the velocity impulse needed at "A" is considered. Equation
(3) is employed to calculate the radius of the perturbed orbit at "A"
(r ) where the true anomaly at point "A" is Aw when Aa<0, and 180°+Aw

A,p

when Aa>0. Knowing r , the velocity at "A" on the perturbed orbit

A,p
(VA,p) may be evaluated by applying equation (47).

Considering point "B", the radius of the initial orbit at "B"
(rB,i) is calculated by employing equation (3) where the true anomaly is
180° when Aa<0 and 0° when Aa>0; the velocity of the initial orbit at
point "B" is calculated by employing equation (47) with the original
semi-ma jor axis.

The transfer semi-major axis is found in terms of the radius of the
perturbed orbit at point "A" and the radius of the original orbit at
point "B",

a_ = (rA’p + rB,i)/Z

The velocity on the transfer ellipse may be determined at points "A" and
"B" by applying equation (47), with a, and rA’p (for VA,t) and rB,i (for
vB,t)' The transfer ellipse velocity and the initial ellipse velocity
at point "B" are colinear. As a result, the magnitude of the velocity
impulse required at point "B" is simply the difference between the
desired velocity (VB,i) and the velocity of the satellite on the

transfer ellipse (VB,t)'
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The velocities at point "A" are not colinear due to the change in

argument of periapsis -- the angle between Vy . and VA p is |90°-1 | -
y'. Consequently,
_ : N2 82,172
AVA =] (VA,t VA’pcosy o+ (VA'p51n7 )]
_ 2 . 2 ,1/2
= VA,t ZVA,tVA,p51n7 + VA,p ]

where equation (48) is employed to calculate siny as a function of the
true anomaly of the perturbed orbit at point A.

The velocity impulse needed to change the plane of the orbit to
correct for the secular change in inclination (Ai) is now considered.
The velocity impulse required for this maneuver is directly proportional
to the magnitude of the velocity of the satellite; consequently, the
maneuver should be accomplished at apoapsis of the largest orbit.

If Aa<0
av,, = 2vB’i|51n(A1/2)|
and if Aa>0
AV, = ZVA,p|51n(A1/2)|
The total change in velocity due to secular changes in semi-major axis,
argument of periapsis, eccentricity, and inclination is the sum of the

velocity impulses required at points "A" and "B", and the impulse

required to change the plane of the orbit.

AV = AV, + AV

A Bt AV

(49)
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Correcting secular changes due to the change in the longitude of
the ascending node was not considered. The eccentricity needed to
produce an orbit with a constant altitude arc is a function of
inclination, semi-major axis, argument of periapsis, J2, ellipticity,
and equatorial radius (see equation (52)). The longitude of the ascending
node (1) doesn’t affect the orbital elements needed to accomplish an

orbit which contains an arc of constant altitude.
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II11 Numerical Methods

Search Method

Identify Orbits with Arcs of Constant Altitude. In order to map
the combinations of mean orbital elements which produce orbits with arcs
of constant ellipsoidal altitude, the semi-major axis (a), argument of
periapsis (w), inclination (i), and planet were chosen as independent
variables. Several cases were considered where the planet, semi-ma jor
axis, and perturbing accelerations were fixed. The eccentricity (e)
which produced arcs of constant ellipsoidal altitude was found as a
function of argument of periapsis and inclination. The following matrix

of independent variables was considered for each case:

w = j(10) 0=<j<18

i = k(10) O0<k<9

The method employed to find values of eccentricity required an input of
the ellipsoidal altitude as a function of an independent variable (time
or true anomaly) over one period. The change in altitude with time (or
true anomaly) was calculated at each time step. The longest group of
points where dh/dt<e was found; where ¢ is the tolerance used to sort
the derivatives. A function (F) indicating the shape of this group of
points was employed to evaluate the orbit and iterated to find the

optimum eccentricity

.1, B
F = [Ahmax +n "] jﬂosj n=0
m
F=(bh +1] onsj n=0
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where Ahmax is the difference between the maximum and minimum altitudes
attained in the range, n is the number of points with dh/dt = 0, So is

the sign of the derivative at the first point on the range and m is the

number of times dh/dt changes sign. The combination of orbital elements
which forced F to be zero were found (see Appendix A for a flow chart of
the method).

Figures 5 and 6 demonstrate changing the eccentricity changes the
satellite’s altitude above the Earth. For both cases inclination is
63.44° and semi-major axis is 7000 km; however, Figure 5 has an argument

of perigee of 0° while Figure 6 has an argument of perigee of 135°,
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Figure 5. Satellite Altitude as a Function of Eccentricity (w = 07)
To get an indication of the sensitivity of the arc of constant altitude

to eccentricity, a Martian case with a large eccentricity is also

presented. Figure 7 demonstrates the changing altitude of a Martian
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satellite as a function of eccentricity. The parameters which were held
constant follow: a = 3600 km, w = 0°, and i = 90°.

Figures 5, 6, and 7, indicate the eccentricity may differ from the
optimum by as much as .1x10‘3 and still produce a reasonably constant

arc.

Earth: a = 7008 km; w = 135 deg: 1 = 63.44 deg; ecalc = 2.089-3
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Figure 6. Satellite Altitude as a Function of Eccentricity (w = 135%)

The eccentricity required to produce an arc of constant altitude was
identified to + .001 x 10°>. The largest deviation from the fitted data
due to the curve fit was on the order of +.01 x ].0'3 (see Appendix F)

3 of the

and most calculated curve fit points were within + .003 x 10~
data. The largest deviations occurred at larger eccentricities where
larger deviations from the optimum eccentricity may be tolerated and

still produce a constant altitude arc.
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Figure 7. Sensitivity of Altitude due to Eccentricity

Two methods were used to produce the values of ellipsoidal altitude
over one period. For the two-body case, equations (44) and (45) were
simply evaluated at each time step. When perturbative effects were
considered, ASAP [l1] was used to numerically integrate the equations of
motion and provide values of ellipsoidal altitude as a function of time.
A central differences scheme was then used to estimate the derivatives
as a function of time.

Curve Fit. A polynomial fit was employed to curve fit both the
two-body results and the change in eccentricity due to Jy- The general
curve fit method is presented here -- independent variables which were
employed and the coefficients which resulted are presented in Section

Iv.
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where

0.5 k=0 or £=0

1. k=0 and 2»0
C =
0.25 k=0 and £=0

kx = order of the polynomial in x

£y = order of the polynomial in y

2x - (x +x . )
X = max min
X -X .
max ~min
7 2y - (ymax+ymin)

Ymax Ymin
The fit may only be used for interpolation, and not extrapolation;
consequently,

X . £ X =x
min max

YminS ¥ *Ymax
The standard recurrence relationship utilized to calculate the Chebyshev
polynomials is presented below
To(x) =1
Tl(x) = X

Tn(x) - 2xTn_1(x) - Tn-Z(X)

Choice of Independent Variables. The independent variables were
selected so a single empirical equation (good for either planet, and all
the semi-major axis and inclination combinations considered) could be
developed to predict the eccentricity which produces orbits with arcs of
constant altitude. The rational employed to choose the non-dimensional

groupings of independent variables for the curve fits is now presented.
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First, the first order equation for ellipsoidal altitude was considered.

Equation (44) was rewritten in a non-dimensional form:

h + Re a (1-e2) 2
7= 3 [ ] + sin” (wtv) i=0
Refsin i Refsin i ‘“(l+ecosv)
h + Re = a i=0

It is clear from this arrangement that for a given inclination and
planet, the value of eccentricity which produces an arc of constant
altitude will depend on w and (Refsinzi/a), while the position of the
arc will depend on v. Consequently, w and (Refsinzi/a) were chosen as
the independent variables used to curve fit the two-body results from
all the cases. In this term, Ref describes the planet, while sinzi/a
describes the orbit. The change in the optimum eccentricity from
twe-body motion due to the J2 term of the geopotential must also be
curve fit., The perturbing potential caused by the J2 term of the
geopotential was used to select the portion of the independent variable
dependent on planet properties. V20 is presented below for

completeness.

Vyp = - ——— (3sinlisin?(wtv) - 1)

The second zonal harmonic and equatorial radius were chosen to represent
the planet (J2Re2), and in order to make the variable non-dimensional,
the term (sini/a)2 was used to describe the orbit. The value used as
the independent variable was JZ(Resini/a)z. Again, this term and w were
used as independent variables to curve fit all the results for the
change in eccentricity from the two-body cases. A correction for J3
was not included. For the Earth cases considered, the change in e

3

caused by J3 was insignificant (on the order of .00l x 10 ”). The
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largest deviation from the J2 results due to J3 occurred for Mars
3

(a=3600km, i=90°) where the change due to the J3 term was -.026 x 10 .
As Figure 7 indicates, a change of this magnitude is not enough to
significantly change the results.

Cases. Table 1 presents the cases which were considered. In each
case, the eccentricity was found which produced an orbit with an arc of
constant altitude for the following values of argument of periapsis and
inclination: w = j(10) O0<j<18 , and i = k(10) O0<k<9

Without a specific application to determine spacecraft geometry and
attitude, choosing a drag coefficient, area, and mass become arbitrary.
For the cases in Table 1 which considered drag, S/m = .02x10.6 kmz/kg,
and CD = 2.0 [11] were chosen resulting in 8 = .02){10'6 kmz/kg. This is
a realistic estimate of B as typical area to mass ratios of satellites
(not including balloons), are between .002)(10-6 and .02){10.6 kmz/kg
(8:xiii].

Table 1. Cases Considered to Determine e(w,i) which Produce
Constant Altitude Arcs

Case Planet Semi-Major Axis (km) Model

1 Earth 6700 Two-Body
2 7000 ’

3 7500

4 6700 J2

5 J3

6 J2 + Drag
7 J3 + Drag
8 7500 J2

9 J3

10 J2 + Moon
11 J3 + Moon
12 Mars 3600 Two-Body
13 4000
14 3600 J2

15 4000
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cula jderations

Calculate Secular Changes in Mean Orbital Elements over One Period.
Once the orbital elements which produce arcs of constant altitude were
identified, the secular changes in semi-major axis, argument of
periapsis, inclination, eccentricity and longitude of the ascending ncde
were determined for several cases by varying the semi-major axis,
ballistic coefficient, and planet. The start time was not varied,
consequently, cases for the various positions of the third body were not
considered. Perturbations due to zonal harmonics up to the sixth order,
drag. and third bodies (Earth: Moon and Sun; Mars: Sun) were considered.
For perturbations due to the geopotential, equations (10) and (11) were
employed. The orbits are circular at i=0, and equations (10) and (11)
are not valid for eccentricities or inclinations of zero; consequently,
the comparisons considered only the inclination range from 15° to 90°.
For perturbations due to drag, equations (30) through (34) were
numerically integrated while employing equation (22) to calculate the
density. The altitude of the satellite was calculated by applying
equation (36), and the rotation rate of the atmosphere was assumed to be
the same as the planet. Values employed to calculate secular changes in
orbital elements due to drag and geopotential are presented in Table 2.
For third body effects, equations (16) through (20) were employed. This
model requires the position of the third body be provided with respect
to an inertial reference frame centered on the planet with the x axis
aligned with the vernal equinox. The position of the third body was
calculated once per orbit. The position was found as a function of time
(in Julian centuries since epoch (T)). The time used to define the
position of the third body was a start time (input variable) plus half

the period calculated using the original mean orbital elements.
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Table 2. Values used to Calculate Secular Changes in Orbital Elements

Parameter Earth Mars Reference
3, 1.082627 x 1072 | 1.960454 x 1072 | Earth: [20]
i 22,542 x 107¢ | -3.164926 x 1072 | GEM-6 Model
3 -1.609  x 1070 | -1.889437 x 10 7

Je 2192 x 1079 2.669249 x 107¢ | Mars: [3]
3 5.23 x 10 -1.340757 x 10

H (km) 78 .4 s3] 998 _, |Barth: [11]
o (kg/m™) 5.215 x 10 1.72 x 10 Mars : [10]
z, (km) 500 100

w, (rad/s)| 7.292  x 107° 7.088  x 1077 | [11]

The positions which were used are presented.

Position of the Sun with respect to the Earth (ref JD: 2415020.)[5]:

1.496 x 108 knm

]
I

1.675104e-2 - 1.1444e-5T - 9.4e-9T2

o
]

i, = 4093197474 - 6.217910e-5T - 2.1468e-9T% + 1.7977e-10T° rad
2 = 0 rad
S
v, = 4.908229653 + 8.24149855¢-TT + 5.9167e-7T2 + 1.22¢-9T° rad
M_ = 6.25658 + 172.0197T - 1.9548T% - 1.22e-9T% rad
Position of the Moon with respect to the ecliptic -- all angles are in

radians. (ref JD: 2415020.)
a = 384.4 x 1072 kn
e = .054900489
m

i ' = 8.9804lle-2
m

0" = 4.523601514 - 9.242202945T + 2.7174776e-6T + 8.7266e-10T°

2 3

wm‘ = 5.8351515 + 19.44368005T - 1.35071e-5T° - 4.53786e-9T" - Qm'

2

Hm' = 4.,71997 + 2299.715T - 1.4835e-6T" + 6.81e-10T3 - Qm' - wm'
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The position of the Moon with respect to the Earth is required.
Transformations to determine the position of the Moon with respect to
the Earth instead of the ecliptic are completed using spherical
trigonometry and are presented below. Figure 8 demonstrates the
geometry of the orbits{5:107-109]. To find im use spherical
trigonometry to find a,

cosa = -cosi cosi + sini_ sini ‘ cosl
s m s m m

where a is in the second quadrant. Now im may be found,

i =n-a
m
Ecliptic Plane
w ;
LI ;
/' ln
’ |
Om P g b :
— L , :
- . " Plane of Earth"s Equator :
\\‘x‘\ [¢] n a ‘I I
Uernal Equinox —— ;
|
|
Moon"s Orbit .i
1
|

|

Figure 8. Geometry of Lunar Orbit with Respect to Ecliptic and Earth
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In order to find W solve for "b" using the law of cosines for angles

and ensure "b" lies in the same hemisphere as Om'

‘l cosb = (cosis + cosa cosim’)/(sina sinim’)

w =w'+Db
m m

Finally, solve for Om using the law of cosines for sides and ensure

Qm is in the same hemisphere as Om'.

’

cos{li = cosfl ' cosb + sinQl ’ sinb cosi
m m m m

Position of the Sun with respect to Mars (reference Julian date
2448400.5)[11]

a, = 227.941 x 10% km

e = .933969 x 107

iS = 25.191153 deg
ﬂs = 0. deg
wg = -109.05076 deg
Ms = -171.60476 deg

The equations defining perturbations due to the third body require
the semi-major axis, radius, right ascension, declination and mean
motion of the third body. The methods which were employed to find these
values are presented. The radius is calculated using equation (3) where

v is approximated by an expansion in mean anomaly and eccentricity([15]

v =M+ (2e - e3/4)sinM + (5e2/4 + 11e*/24)sin2y

+ (13/12)e3sin3¥ + (103/96)esin4M (50)
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The mean motion is found using the semi-major axis and mass of the third
body:

n = (;4/a3)1/2

The declination (®') and right ascension (1’) are calculated using
relationships from spherical trigonometry. The range of inclinations of
the third bodies considered in this thesis were only in the first
quadrant; consequently, declination is in the same hemisphere as (wt+v).
The right ascension is the sum of the longitude of the ascending node
() and "b". Equation (51) is employed to calculate "b" which must be

in the same quadrant as (wtv).

o' = sin'l[sini sin(wtv) ]

tanb = cosi tand’ (51)

Determine Orbit Stability. Finally, in order to compare the
various orbits to determine which was the most stable, the change in
velocity needed to transfer the satellite from the perturbed orbit back
to the original orbit was considered. Equation (49) was used to

determine the change in velocity.
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Cases. Table 3 presents the cases consider to determine secular

changes in orbital elements.

Table 3. Cases Considered to Determine Secular Changes in Orbital
Elements and Velocity Change as a Function of w and 1

Case Planet Semi-Ma jor Axis (km) B (kmz/kg)
1 Earth 6700 .0le-6
2 .02e-6
3 .04e-6
4 7500 .0le-6
5 .02e-6
6 .04e-6
7 Mars 3600 .0le-6
8 .02e-6
9 .04e-6

10 4500 .0le-6

11 .02e-6

12 .04e-6
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IV Results

Iwo-Body Solutions

First, the eccentricity which produces constant altitude arcs was
found as a function of argument of periapsis and inclination while
holding the semi-major axis and planet fixed. Figures B-1 and B-2 present
the results for Earth with semi-major axes of 6700 km and 7500 km
respectively. Figures B-3 and B-4 present the results for Mars with
semi-ma jor axes of 3600 km and 4000 km.

The eccentricities identified are all quite small and the orbits
are almost circular. As may be seen in all the figures, §e/bw is
greatest at argument of periapses of 0° and 180O and a minimum at 45°,
and 135°; and §i/6w is smallest for inclinations of 0° and 90°. As
would be expected from equation (44), the eccentricity increases as the
inclination increases, and is zero when the inclination is zero.
Comparing Figures B-1 and B-2, and Figures B-3 and B-4, indicates the
eccentricity decreases as the semi-major axis increases.

Perturbed Solution

Figures B-5 though B-8 present the change in eccentricity due to
J2. Althougl all the perturbations listed in Table 1 were considered,
it became apparent for a single period, the only significant effect on
the eccentricity required to achieve an arc of constant altitude was due
to the J, term of the geopotential. For Earth, the difference between
the eccentricity found considering J3, drag, and the Moon and the

eccentricity found considering J2 was on the order of .001 x 10-3. For

Mars, the largest change in eccentricity due to J3 was on the order of
.01 x 10'3. Changes due to drag weren't considered for Martian cases.

The Martian atmosphere is much less dense than the Earth’s and
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short term perturbations due to drag shouldn’'t significantly affect the
choice of eccentricity.

The change in eccentricity presented in Figures B-5 through B-8 is
subtracted from the eccentricity predicted using the two-body motion to
give the required eccentricity. Figures B-5 and B-6 present the results for
Earth with semi-major axes of 6700 km and 7500 km respectively. Figures
B-7 and B-8 present the results for Mars with semi-major axes of 3600 km
and 4000 km.

Once the optimum eccentricity was found which produced constant
altitude arcs, the location, duration, and latitude range covered by the
arcs were found. The mid-latitude presented is the average of the
maximum and minimum latitudes covered by the constant altitude arcs, while
the latitude range presented is the difference between the maximum and
minimum latitudes covered. Both the duration of the arc and the
latitude range of the arc are presented for a maximum change in altitude
of 100 m and 1 km. The change in altitude is the difference between the
maximum and minimum altitudes attained by the arc. Figures C-1 through
C-12 present the results for Earth where Figures C-1 through C-6 are for
the 6700 km semi-major axis orbits and Figures C-7 through C-12 are for
the 7500 km orbits. Figures C-13 through C-24 are the results for the
Martian cases where Figures C-13 through C-18 present the 3600 km
results and Figures C-19 through C-24 are for the 4000 km semi-ma jor
axis case.

Mid-Latitude of Arcs. Figures C-1, C-7, C-13, and C-19 present the
mid-latitude as a function of argument of periapsis and inclination.
There are a large number of combinations which produce arcs with a given
mid-latitude. The arcs are positioned over the northern hemisphere when

the argument of periapsis is between 0° and 180° and are positioned over
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the southern hemisphere when the argument of periapsis is between 180°
and 360°. As inclination increases, the magnitude of the mid-latitude
of the arc increases. Of course, the inclination must be at least as
large as the sum of the mid-latitude and half the desired latitude
range. The mid-latitude was calculated by taking the difference between
the maximum and minimum latitudes achieved by the arc; consequently, the
mid-latitude of polar orbits with the arc positioned over the poles (w =
90° and 270°%) is less than 90°.

Altitude of Arc. Figures C-2, C-8, C-14, and C-20 present the
altitude of the arcs as a function of argument of periapsis and
inclination. The altitude is dependent on the mid-latitude of the arc,
the argument of periapsis, and the true anomaly range covered by the
arc. At argument of periapses of 0° and 180°, the constant altitude arc
occurs at apoapsis, while the arc occurs at periapsis when the argument
of periapses are 90° and 270°.

Duration of Arc. Figures C-3, C-9, C-15, and C-21 present the
duration of the arcs where the maximum change in altitude is less than
100 m. When i=e=0, the arc lasts the entire orbital period; however,
the latitude range covered is zero. The duration of the arc is
reasonably constant for inclinations larger than 20° and for a given
argument of periapsis the duration decreases as the inclination
increases. Longer duration arcs may be produced when the argument of
periapsis is an integer multiple of 90° with the largest duration arcs
occurring at w = 0° or 180°. When the argument of periapsis is 0° or
180°, the mid-latitude of the constant altitude arc is positioned at 0°
latitude. For these orbits, the symmetry of the orbit and planet are
aligned causing a longer constant altitude arc. Figures C-4, C-10,

C-16, and C-22 present the duration of the arcs when the change in
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altitude is less than 1 km. As the allowable altitude variation of the
arc is increased, the duration increases.

Latitude Range of the Arc. Figures C-5, C-11, C-17, and C-23
present the latitude range of the arcs as a function of argument of
periapsis and inclination when the altitude variation is less than 100
m. Figures C-6, C-12, C-18, and C-24 present the latitude range when
the altitude variation is less than 1 km. In all cases, the largest
latitude coverage occurs when the argument of periapsis is 0° or 180°.
Again, this is due to the matched symmetry of the orbit and planet, and
coincides with the longest duration arcs. Also, at a given argument of
periapsis, the latitude coverage increases with increasing inclination.
The latitude range presented for an inclination of 90° at argument of
periapses of 90° and 270° is low due to the method used to calculated
the latitude range. An orbit with these parameters will have the
constant altitude arc positioned over the poles and when the difference
between the maximum and minimum latitudes achieved is calculated, the
resulting latitude range will be less than the range reported if the arc
was not positioned over a pole. A latitude range of about 50° is
possible while maintaining an altitude variation of less than 100 m and
a latitude range of up‘to 90° can be achieved if an altitude variation

of less than 1 km is acceptable.

Non-di : lized Resul
The results from the previous cases were combined. Figure 9
presents a plot of eccentricity as a function of w and Refsinzi/a for
the two-body cases, while Figure 10 presents the change in eccentricity
from the two-body cases as a function of w, and Jz(Resini/a)z.
The results presented in Figures 9 and 10 were curve fit producing

a single empirical equation. Equation (52) may be used with the




coefficients presented in Tables 4 and 5 to determine the eccentricity
required to produce an arc of constant altitude given the semi-major
axis, argument of periapsis, inclination, ellipticity, and the J2 zonal

harmonic of the geopotential.

e = eyp - Ae i»0 (52)
e =0 i=0
where
8 2
Ez }: C Ak,f Tk(ﬂ) TB(IZB) (53)
k=0 £=0
8 5
hAe = Z Z k,2 Tk(Q) TI(IJZ) (54)
k=0 £=0
1. k=0 and £=0
0.5 k=0 or £=0
0.25 k=0 and £=0

The argument of periapses is the same for both €5p and Ae.

Q= w45.0 - 1.0

_ w 0.=w<90.
w=14 180. - v 90.<w=<180.
w + 180. 180.<w<360.

The inclination is combined with planet properties and differs for €
and Ae. For e5p IZB is a function of semi-major axis, inclination,

ellipticity, and equatorial radius
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Ip = 2L/ op(max) ~ 1-°
. 2.
i,p = (f Re/a) sin“i

< .48874383 x 1072

0 =< i2B <

= iZB(max)

For Ae, I _, is a function of semi-ma jor axis, inclination, ellipticity,

J2
and J

I = 2iJ2/iJ2(max) B
2 . 2.
= J2 (Re/a) sin"i

1.0

i

J2
. -2 .
0 < i, < .17418950 x 10 = 1J2(max)
Table 4. Coefficients for e
By s
2 0 1 2
k
0 1.3382318E-2 6.6831547E-3 -8.8992362E-6
1 5.9572268E-5 3.9537390E-5 9.6394148E-6
2 2.2556540E-3 1.1263017E-3 -2.0021737E-6
3 4.6696319E-5 3.0815889E-5 7.3419897E-6
4 5.9702036E-4 3.0177004E-4 3.1364165E-6
5 2.6463970E-5 1.7652256E-5 4.3897306E-6
6 1.8920545E-3 9.6492837E-5 2.2358554E-6
7 8.4988295E-6 5.9054707E-6 1.6974386E-6
8 4.2832099E-5 2.2063680E-5 1.2341417E-6
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Figures 11
Figures 11

sufficiently accurate.

with Figures 9 and 10 indicates the curve fit is

presented in Section III.
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Table 5. Coefficients for Ae
0 1 2
0 2.4192677E-3 1.2121056E-3 1.0566496E-5
1 2.2288511E-5 1.4267904E-5 2.9502728E-6
2 4.6494823E-4 2.2535319E-4 5.4081346E-6
3 1.7652175E-5 1.1116183E-5 2.2108308E-6
4 1.7222103E-4 8.6194009E-5 6.6663719E-6
5 9.8102319E-6 6.3723936E-6 1.3617805E-6
6 6.7878651E-5 3.4179548E-5 3.6139002E-6
7 2.9070219E-6 2.1377139E-6 5.7416986E-7
8 1.8819281E-5 8.8447405E-6 9.3013404E-7
3 4 5

0 .3977998E-5 .5367581E-8 .4362035E-6
1 .0193706E-8 .5042158E-7 .5487548E-7
2 .2653309E-5 .2310241E-7 .7169557E-7
3 .9007614E-7 8.1730486E-8 .1539688E-7
4 .1543029E-6 1.7824329E-6 .3768136E-6
5 .8643838E-8 8.5013670E-8 .9025722E-8

.1601894E-6 1.0169085E-6 .2980839E-6
7 .5954531E-7 7.5947404E-8 .2068010E-7
8 .0599178E-6 2.6786479E-7 .4068201E-6

are plots of equations (53) and (54). Comparing

Tabulated comparisons of the data points and
eccentricities calculated using equation (52) are presented in Appendix

A discussion of the required accuracy in predicting eccentricity is
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Secular Considerations

The secular changes in orbital elements were calculated using the
mean orbital elements which produce orbits with arcs of constant
altitude. Perturbations due to the geopotential, drag, and third bodies
were considered. The secular changes in a, e, i, w, and Q are presented
as a function of the initial argument of periapsis and inclination. In
all cases, the initial longitude of ascending node was set to 0°.

Secular Change in Semi-Major Axis over One Period. Figures D-1
through D-6 present the results for the secular change in semi-major
axis. Figures D-1 and D-2 present the results for Earth with a
semi-major axis of 6700 km and ballistic coefficients of .lelO-6 km2/kg
and .OhxlO.6 km2/kg respectively while Figures D-3 and D-4 present the
same results for Mars with a semi-major axis of 3600 km. In order to
consider cases in which drag doesn’t play an important role, Figures D-5
and D-6 present the results for Earth (a = 7500 km) and Mars (a = 4500

6 kmz/kg. Comparing Figures

km) with a ballistic coefficient of .04x10°
D-1 and D-2 and Figures D 3 and D-4 indicate increasing the ballistic
coefficient increases the change in semi-major axis for low orbits.
Equation (30) is directly proportional to the ballistic coefficient and
the square of the semi-major axis, and supports this observation. For
both Earth and Mars, the minimum change in semi-major axis due to
atmospheric drag occurs at an argument of periapsis of 45° or 225° and

an inclination of 63°. 1In Figures D-5 and D-6, the geopotential caused

the most significant change in semi-major axis. Equation (10) indicates

the change in semi-major axis due to the geopotential will be zero when
w is 0° or 180° or i is 63.44°. These areas where semi-major axis
doesn’t change are clearly presented by Figures D-5 and D-6. The small

negative offset of Figure D-5 is due to atmospheric drag.
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Secular Change in Inclination over One Period. Figures D-7 through
D-12 present the results for the change in inclination. Again, Figures
D-7 and D-8 are for Earth (a=6700km) and Figures D-9 and D-10 are for
Mars (a=3600km), where the first figure for each planet prasents the
data for B=.01x10~6 kmz/kg and the second figure presents data for
B=.04x10'6km2/kg. Figures D-11 and D-12 present results for Earth

® xw?/kg. For Earth the

(a=7500km) and Mars (a=4500km) with B=.04x10"
largest change in inclination was caused by the Moon in Figures D-7 and
D-11 and drag in Figure D-8. For Mars the largest change in inclination
was caused by the geopotential and Sun in Figure D-9, drag in Figure
D-10., and geopotential at low inclinations and the Sun at high
inclinations in Figure D-12. Comparing Figures D-7 and D-8 and Figures
D-9 and D-10, indicates at low altitude, high inclination and argument
of periapsis, drag significantly affects the change in inclination by
reducing the inclination. The secular change in inclination due to drag
is calculated using equation (32) which is zero when the inclination is
zero. If all other parameters remain constant equation (32) will have
the largest magnitude when the inclination is 90°.

Secular Change in Argument of Periapsis over One Period. Figures
D-13 through D-18 present the results for the secular change in argument
of periapsis. Figures D-13 and D-14 are for Earth (a=6700km) and
Figures D-15 and D-16 are for Mars (a=3600km) -- for each planet, B =
.01x10"® ka’/kg is presented first while B = .04x10°° ka?/kg is
presented second. Figures D-17 and D-18 present results for Earth
(a=7500km) and Mars (a=4500km) with B = .04x10"° km’/kg. 1In all cases

considered, the largest secular change in the argument of periapsis was

caused by the geopotential. By comparing the figures, it may be
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concluded that the change in argument of periapsis is not significantly
affected by drag. The large magnitudes at low inclinations were from
the Wy, Wg, and w,, components of equation (11). The change in argument
of periapsis is zero at an inclination of 63.4° when the argument of
periapsis is zero. Mars and Earth have the opposite sign on the change
in argument of periapsis at high inclinations -- this is due to the
difference in signs of the J5 terms of their respective geopotentials.

Secular Change in Eccentricity over One Period. Figures D-19
through D-24 present the results for the change in eccentricity. The
cases presented are in the same order as previously mentioned. In the
cases with the smallest semi-major axes and largest ballistic
coefficient for both Earth and Mars (Figures D-20 and D-22), the change
in eccentricity was due primarily to drag. For all the other cases
considered, the change in eccentricity was primarily due to the
geopotential. Drag increases the reduction is eccentricity -- Figure
D-20 has been shifted down relative to Figure D-19, and similarly Figure
D-22 has been shifted down relative to Figure D-21.

Secular Change in Longitude of the Ascending Node over One Period.
Figures D-25 through D-30 present the changes in longitude of the
ascending node. The change in longitude of the ascending node was
primarily due to the geopotential in all the cases considered. All the
figures indicate, the minimum change occurs at an inclination of 90° and
the largest magnitude change occurs at an inclination of 0°. The 02
term of equation (11) is a multiple of cosi, and consequently indicates
the secular change in longitude of the ascending node will be largest

when the inclination is 0° and zero when the inclination is 90°.
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Velocity Impulse Required to Counteract Secular Changes. Figures
E-1 through E-6 present the velocity impulses needed to move the
satellite from the perturbed orbit to the original orbit. For all the
cases considered, the change in velocity was driven by the required
plane change to correct inclination. As a result, station keeping fuel
can be minimized by choosing an orbit which minimizes the change in

inclination.
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V Conclusions

In this thesis an equation was developed to empirically determine
the mean orbital elements which produce arcs of minimum altitude
variation about an oblate planet. These orbits are useful for
surveillance or scientific missions using optics with fixed focal
lengths. The resulting orbits were considered and the characteristics
of minimum variation arcs were identified. The secular changes to the
mean orbital elements due to geopotential, drag, and third body
perturbations were found and the velocity impulse needed to maintain the

desired orbit was also calculated.

Conclusjions

1. Orbits which contain arcs of minimum altitude variation were
identified.

2. An empirical relationship was developed to identify

combinations of the mean orbital elements which produce arcs of constant
altitude. The equation determines eccentricity as a function of
semi-major axis, inclination, argument of periapsis, the J2 zonal

harmonic¢, and the planet’s ellipticity and equatorial radius.

e = eZB - Ae i#o (52)
e=20 i=0
where
8 2
€5p = E: E: C Ak,! Tk(ﬂ) TI(IZB) (53)
k=0 £=0
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C By 5 T(@ Ty(T ;) (54)
0

T

8
Ae = }:
k=

The coefficients for the equation are presented in Tables 4 and 5, and

0

the independent variables are defined in Section IV. This curve fit is
valid for inclinations from 0° to 90° for Earth orbits with semi-ma jor
axes greater than one Earth radius and Martian orbits with semi-ma jor
axes greater than 3600 km. For smaller Martian semi-major axes, the
inclination range becomes limited. For Martian orbits with semi-ma jor
axes of one planet radius, the equation is valid for an inclination range
of 0° to 70°. The valid inclination range increases as the semi-ma jor
axis increases until the full range of 0° to 90° is achieved for
semi-major axes greater than or equal to 3600 km.

3. All the orbits with arcs of minimum altitude variation were
nearly circular. The orbits became more eccentric for smaller
semi-major axes and larger inclinations.

4, The velocity impulse required to counteract secular changes
to the mean orbital elements due to a non-spherical gravitational field,
drag, and third bodies was calculated. 1In all cases, the magnitude of
the required impulse was driven by the plane change to correct the
inclination. Consequently, in order to minimize station keeping fuel,

an orbit with the minimum change in inclination should be chosen.

Recommendat ions
1. Further work should be done to identify orbits with arcs of
minimum altitude variation over specific latitude and longitude ranges.
2. Third body perturbations of orbits with large semi-major axes

should be considered for different third body positions.
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Appendix B

tricity Required to oduce an Arc o inimum titude Varia

Figures B-1 through B-8 present the optimum eccentricity to produce
arcs of minimum altitude variation.

Figures B-1 and B-5 present results for Earth orbits with a
semi-major axis of 6700 km; Figures B-2 and B-6 present results for
Earth orbits with 7500 km semi-major axes; Figures B-3 and B-7 present
Martian orbits with 3600 km semi-major axes; and Figures B-4 and B-8 are
Martian results with semi-major axes of 4000 km.

Figures B-1 through B-4 present solutions to the two-body problem,
while Figures B-5 through B-8 present the change in optimum eccentricity
caused by perturbations due to Iy The optimum eccentricity for a given
argument of periapsis and inclination is found by subtracting the change

due to J, from the two-body solution.

2
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Earth (a = 6788 km): Two-Body Solution
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Mars (a = 3688 km): Two—Body Solution
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Figure B-5. Earth (a=6700 km): Change in Eccentricity due to J
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Appendix C

Characteristics of Arcs of Minimum Altitude Variation

Figures C-1 through C-24 present the characteristics of the arcs of
minimum altitude variation.

Figures C-1 through C-6 present the results for Earth with a
semi-major axis of 6700 km. Figures C-7 through C-12 present results
for Earth with a semi-major axis of 7500 km. Figures C-13 through C-18
present results for Mars with a semi-major axis of 3600 km while Figures
C-19 through C-24 are for Martian orbits with 4000 km semi-major axes.

For each of the cases considered, the first figure presents the
mid-latitude of the constant altitude arc, and the second figure
presents the altitude of the arc. The third and fourth figures present
the duration of the arc for a change in altitude less than 100 m and
1 km respectively. Finally, the last two figures present the latitude

range of the arc for a change in altitude of less than 100 m and 1 km.
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Earth (a=678Bkm): M d Lati tude of Arc of Constant Al+i1tide
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Earth (a=6708km): Duration of Constant Altitide (delta h < .1 km)
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Earth (a=7580km): Duration of Constant Altitide (delta h < .1 km)
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Mars (a=3608km): M d Latitude of Arc of Constant Al titide
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Figure C-14. Mars (a=3600 km): Altitude of Arc
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Mars (a=3680km): Duration of Constant Altitide (delta h < .1 km)
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Figure C-22. Mars (a=4000 km): Duration of Arc Ah < lkm
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Mars (a=4808knm): Lat: tude Range w1 th Constant Altitide (delta h < .1 km)

s8. —

= 18 A

3 =

W E . ~— 188.

= = - 88

T B 6.

x =

518 =

<] = _ INCLINRTION (deg)
B 3 S}

8. 180. 298. 368. 480
ARGUMENT OF PERIAPSIS (deg)

Figure C-23. Mars (a=4000 km): Latitude Range of Arc Ah < .1 km
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Appendix D

Secular Changes in Mean Orbital Elements

Figures D-1 through D-30 present the secular changes in semi-major
axis (D-1:D-6), inclination (D-7:D-12), argument of periapsis
(D-13:D-18), eccentricity (D-19:D-24), and longitude of the ascending
node (D-25:D-30). For each orbital element, the first two figures
present results for Earth (a = 6700 km) with ballistic coefficients of

6 kmz/kg. The third and fourth figures

.01 x 10°® kn?/kg and .04 x 10°
present results for Mars (a = 3600 km) with ballistic coefficients of

01 x 10°° kmz/kg and .04 x 10°° kmz/kg. The final two figures present
results for Earth (a = 7500 km) and Mars (a = 4500 km) with a ballistic

coefficient of .04 x 10°° km’/kg.
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Earth: a = 6780 km beta = .Ble-6 km"2/kg
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Mors: a = 3608 km beta = .Ble-b6 kn"2/kg
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Earth: a = 7508 km beta = .Be-6 km"2/kg
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Figure D-5. Earth(a=7500km, B=.04e-6 kmz/kg): Semi-ma jor Axis Change
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Figure D-6. Mars(a=4500km, f=.0be-6 km’/kg): Semi-major Axis Change
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Earth(a=6700km, B=.0le-6 kn’/kg): Inclination Change
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Figure D-8. Earth(a=6700km, p-.04e-6 km’/kg): Inclination Change
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Figure D-10. Mars(a-3600km, f=-.O4e-6 km’/kg): Inclination Change
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Figure D-12.

Mars(a=4500km, f~.04e-6 km’/kg): Inclination Change
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Figure D-13. Earth(a=6700km, B=.0le-6 kmz/kg): Arg of Periapsis Change
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Figure D-14. Earth(a=6700km, g=.04e-6 kmz/kg): Arg of Periapsis Change
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Figure D-15. Mars(a=3600km, B=.0le-6 kmz/kg): Arg of Periapsis Change
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Figure D-16. Mars(a=3600km, f=~.Obe-6 km’/kg): Arg of Periapsis Change
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Figure D-18. Mars(a=4500km, B=.04e-6 kmz/kg): Arg of Periapsis Change
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Figure D-19. Earth(a=6700km, B=.0le-6 kmz/kg): Eccentricity Change
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Figure D-20. Earth(a=6700km, f=.04e-6 km>/kg): Eccentricity Change
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Figure D-21. Mars(a=3600km, B=.0le-6 kmz/kg): Eccentricity Change
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Figure D-22. Mars(a=3600km, B=-.04e-6 kmz/kg): Eccentricity Change
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Earth: a = 7500 km beta = .B4e-6 kn"2/kg
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Figure D-23. Earth(a=7500km, B=.7%4e-6 kmz/kg): Eccentricity Change
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Figure D-24. Mars(a=6500km, f-.04e-6 km’/kg): Eccentricity Change
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Figure D-25. Earth(a=6700km, f=.0le-6 kmz/kg): Long of Asc Node Change
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Figure D-26. Earth(a=6700km, f=.04e-6 kmz/kg): Long of Asc Node Change
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Figure D-27. Mars(a=3600km, f=.0le-6 kmz/kg): Long of Asc Node Change
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Figure D-28. Mars(a=3600km, B=.04e-6 kmz/kg): Long of Asc Node Change
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Figure D-29. Earth(a=7500km, B=.04e-6 kmz/kg): Long of Asc Node Change
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Figure D-30. Mars(a=4500km, B=.04e-6 kmz/kg): Long of Asc Node Change
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Velocit

Figures E-1 through E-6 present the velocity impulse required to

maintain a given orbit which contains a constant altitude arc. The

figures are presented in the same order as the cases in Appendix D.
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Figure E-1. Earth(a=6700km, B=.0le-6 kmz/kg): Velocity Impulse
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Figure E-2. Earth(a=6700km, f=.0be-6 km’/kg): Velocity Impulse
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Mars: a = 3608 km beta = .Ble-6 kn"2/kg
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Figure E-3. Mars(a=3600km, B=.0le-6 kmz/kg): Velocity Impulse
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Figure E-4. Mars(a=3600km, B=.04e-6 km2/kg): Velocity Impulse
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Figure E-6. Mars(a=4500km, p=.04e-6 km2/kg): Velocity Impulse
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Appendix F
o) Vv t
Eé;th; a = QZQQ m

W i e (data) e (fit) w i i

0.0 10.0 .000157 .000157 0.0 30.0 .001295 .001291
10.0 10.0 .000112 .000112 10.0 30.0 .000919 .000913
20.0 10.0 .000096 . 000096 20.0 30.0 .000779 .000781
30.0 10.0 .000088 .000088 30.0 30.0 .000713 .000717
40.0 10.0 .000085 .000085 40.0 30.0 .000684 .000687
50.0 10.0 .000085 .000085 50.0 30.0 .000684 .000687
60.0 10.0 .000088 .000088 60.0 30.0 .000713 .000717
70.0 10.0 .000096 .000096 70.0 30.0 .000779 .000780
80.0 10.0 .000112 .000112 80.0 30.0 .000919 .000913
90.0 10.0 .000157 .000157 90.0 30.0 .001302 .001299
100.0 10.0 .000112 .000112 100.0 30.0 .000919 .000913
110.0 10.0 .000096 . 000096 110.0 30.0 .000779 .000780
120.0 10.0 .000088 .000088 120.0 30.0 .000713 .000717
130.0 10.0 .000085 .000085 130.0 30.0 .000684 .000687
140.0 10.0 .000085 .000085 140.0 30.0 .000684 .000687
150.0 10.0 .000088 .000088 150.0 30.0 .000713 .000717
160.0 10.0 . 000096 .000096 160.0 30.0 .000779 .000781
170.0 10.0 .000112 .000112 170.0 30.0 .000919 .000913
180.0 10.0 .000157 .000157 180.0 30.0 .001295 .001291

0.0 50.0 .003090 .003081 0.0 70.0 . 004682 .004650
10.0 50.0 .002135 .002137 10.0 70.0 .003228 .003218
20.0 50.0 .0Q1821 .001822 20.0 70.0 .002733 .002739
30.0 50.0 .001665 .001667 30.0 70.0 .002503 .002502
40.0 50.0 .001598 .001599 40.0 70.0 .002397 .002401
50.0 50.0 .001598 .001598 50.0 70.0 .002397 .002400
60.0 50.0 .001665 .001667 60.0 70.0 .002503 .002503
70.0 50.0 .001821 .001824 70.0 70.0 .002733 .002738
80.0 50.0 .002135 .002137 80.0 70.0 .003228 .003218
90.0 50.0 .003128 .003118 90.0 70.0 .004771 .004737
100.0 50.0 .002135 .002137 100.0 70.0 .003228 .003218
110.0 50.0 .001821 .001824 110.0 70.0 .002733 .002738
120.0 50.0 .001665 .001667 120.0 70.0 .002503 .002503
130.0 50.0 .001598 .001598 130.0 70.0 .002397 .002400
140.0 50.0 .001598 .001599 140.0 70.0 .002397 .002401
150.0 50.0 .001665 .001667 150.0 70.0 .002503 .002502
160.0 50.0 .001821 .001822 160.0 70.0 .002733 .002739
170.0 50.0 .002135 .002137 170.0 70.0 .003228 .003218
180.0 50.0 .003090 .003081 180.0 70.0 .004682 .004650

0.0 90.0 .005231 .005265 100.0 90.0 .003663 .003644
10.0 90.0 .003663 .003644 110.0 90.0 .003108 .003099
20.0 90.0 .003108 .003100 120.0 90.0 .002834 .002833
30.0 90.0 .002834 .002833 130.0 90.0 .002713 .002717
40.0 90.0 .002713 .002717 140.0 90.0 .002713 .002717
50.0 90.0 .002713 .002717 150.0 90.0 .002834 .002833
60.0 90.0 .002834 .002833 160.0 90.0 .003108 .003100
70.0 90.0 .003108 .003099 170.0 90.0 .003663 .003644
80.0 90.0 .003663 .003644 180.0 90.0 .005231 .005265
90.0 90.0 .005342 .005378
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th:

w i e (data e (fit) W i
0.0 10.0 .000143 .000145 0.0 30.0
10.0 10.0 .000101 .000102 10.0 30.0
20.0 10.0 .000087 .000087 20.0 30.0
30.0 10.0 .000079 .000080 30.0 30.0
40.0 10.0 .000076 .000077 40.0 30.0
50.0 10.0 .000076 .000077 50.0 30.0
60.0 10.0 .000079 .000080 60.0 30.0
70.0 10.0 .000087 .000088 70.0 30.0
80.0 10.0 .000101 .000102 80.0 30.0
90.0 10.0 .000143 .000145 90.0 30.0
100.0 10.0 .000101 .000102 100.0 30.0
110.0 10.0 .000087 .000088 110.0 30.0
120.0 10.0 .000079 .000080 120.0 30.0
130.0 10.0 .000076 .000077 130.0 30.0
140.0 10.0 .000076 .000077 140.0 30.0
150.0 10.0 .000079 .000080 150.0 30.0
160.0 10.0 .000087 .000087 160.0 30.0
170.0 10.0 .000101 .000102 170.0 30.0
180.0 10.0 .000143 .000145 180.0 30.0
0.0 50.0 .002823 .002802 0.0 70.0
10.0 50.0 .001945 .001944 10.0 70.0
20.0 50.0 .001658 .001659 20.0 70.0
30.0 50.0 .001516 .001520 30.0 70.0
40.0 50.0 .001455 .001458 40.0 70.0
50.0 50.0 .001455 .001457 50.0 70.0
60.0 50.0 .001516 .001520 60.0 70.0
70.0 50.0 .001658 .001661 70.0 70.0
80.0 50.0 .001945 .001944 80.0 70.0
90.0 50.0 .002855 .002835 90.0 70.0
100.0 50.0 .001945 .001944 100.0 70.0
110.0 50.0 .001658 .001661 110.0 70.0
120.0 50.0 .001516 .001520 120.0 70.0
130.0 50.0 .001455 .001457 130.0 70.0
140.0 50.0 .001455 .001458 140.0 70.0
150.0 50.0 .001516 .001520 150.0 70.0
160.0 50.0 .001658 .001659 160.0 70.0
170.0 50.0 .001945 .001944 170.0 70.0
180.0 50.0 .002823 .002802 180.0 70.0
0.0 90.0 .004784 .004797 100.0 90.0
10.0 90.0 .003310 .003313 110.0 90.0
20.0 90.0 .002817 .002822 120.0 90.0
30.0 90.0 .002572 .002580 130.0 90.0
40.0 90.0 .002469 .002476 140.0 90.0
50.0 90.0 .002469 .002475 150.0 90.0
60.0 90.0 .002572 .002580 160.0 90.0
70.0 90.0 .002817 .002823 170.0 90.0
80.0 90.0 .003310 .003313 180.0 90.0
90.0 90.0 .004876 .004893
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.001185
.000830
.000708
.000648
.000622
.000622
.000648
.000708
.000830
.001191
.000830
.000708
.000648
.000622
.000622
.000648
.000708
.000830
.001185

.004270
.002924
.002490
.002275
.002183
.002183
.002275
.002490
.002924
.004344
.002924
.002490
.002275
.002183
.002183
.002275
.002490
.002924
.004270

.003310
.002817
.002572
.002469
.002469
.002572
.002817
.003310
.004784

.001178
.000832
.000711
.000654
.000626
.000626
.000654
.000711
.000832
.001184
.000832
.000711
.000654
.000626
.000626
.000654
.000711
.000832
.001178

.004234
.002925
.002493
.002279
.002188
.002187
.002280
- .002494
.002925
.004309
.002925
.002494
.002280
.002187
.002188
.002279
.002493
.002925
.004234

.003313
.002823
.002580
.002475
.002476
.002580
.002822
.003313
.004797




|
l Mars: a = 3600 km
w it e (data) e (fit) W i e (data) e (fit)
l 0.0 10.0 .000232 .000228 0.0 30.0 .001895 .001935
10.0 10.0 .000170 .000167 10.0 30.0 .001357 .001356
20.0 10.0 .000147 .000143 20.0 30.0 .001163 .001157
30.0 10.0 .000135 .000131 30.0 30.0 .001065 .001061
. 40.0 10.0 .000130 .000126 40.0 30.0 .001024 .001017
50.0 10.0 .000130 .000126 50.0 30.0 .001024 .001017
60.0 10.0 .000135 .000131 60.0 30.0 .001065 .001061
70.0 10.0 .000147 .000142 70.0 30.0 ,001163 .001159
. 80.0 10.0 .000170 .000167 80.0 30.0 .001357 .001356
90.0 10.0 .000232 .000228 90.0 30.0 .001909 .001948
100.0 10.0 .000170 .000167 100.0 30.0 .001357 .001356
. 110.0 10.0 .000147 .000142 110.0 30.0 .001163 .001159
120.0 10.0 .000135 .000131 120.0 30.0 .001065 .001061
13C.0 10.0 .000130 .000126 130.0 30.0 .001024 .001017
140.0 10.0 .000130 .000126 140.0 30.0 .001024 .001017
l 150.0 10.0 .000135 .000131 150.0 30.0 .001065 .001061
160.0 10.0 .000147 .000143 160.0 30.0 .001163 .001157
170.0 10.0 .000170 .000167 170.0 30.0 .001357 .001356
l 180.0 10.0 .000232 .000228 180.0 30.0 .001895 .001935
0.0 50.0 .004547 .004594 0.0 70.0 .006904 .006856
10.0 50.0 .003174 .003188 10.0 70.0 .004771 .004769
I 20.0 50.0 .002710 .002710 20.0 70.0 ,004062 .004060
30.0 50.0 .002479 .002474 30.0 70.0 .003712 .003709
40.0 50.0 .002381 .002372 40.0 70.0 .003562 .003559
50.0 50.0 .002381 .002372 50.0 70.0 .003562 .003558
l 60.0 50.0 .002479 .002474 60.0 70.0 .003712 .003710
70.0 50.0 .002710 .002708 70.0 70.0 .004062 .004061
80.0 50.0 .003174 .003188 80.0 70.0 .004771 .004769
I 90.0 50.0 .004630 .004672 90.0 70.0 .007097 .007042
100.0 50.0 .003174 .003188 100.0 70.0 .004771 .004769
110.0 50.0 .002710 .002708 110.0 70.0 .004062 .004061
120.0 50.0 .002479 .002474 120.0 70.0 .003712 .003710
130.0 50.0 .002381 .002372 130.0 70.0 .003562 .003558
140.0 50.0 .002381 .002372 140.0 76.0 .003562 .003559
150.0 50.0 .002479 .002474 150.0 70.0 .003712 .003709
160.0 50.0 .002710 .002710 160.0 70.0 .004062 .004060
170.0 50.0 .003174 .003188 170.0 70.0 004771 .004769
180.0 50.0 .004547 .004594 180.0 70.0 .006904 .006856
0.0 90.0 .007663 .007668 100.0 90.0 .005402 .005404
10.0 90.0 .005402 .005404 110.0 90.0 .004594 .004595
20.0 90.0 .004594 .004596 120.0 90.0 .004196 .004198
30.0 90.0 .004196 .004197 130.0 390.0 .004025 .004025
40.0 90.0 .004025 .004027 140.0 90.0 .004025 .004027
50.0 90.0 .004025 .004025 150.0 90.0 .004196 .004197
60.0 90.0 .004196 .004198 160.0 90.0 .004594 .004596
70.0 90.0 .004594 .004595 170.0 90.0 .005402 .005404
80.0 90.0 .005402 .005404 180.0 90.0 .007663 .007668
90.0 90.0 .007902 .007908

103




. Mars: a = 4000 knp
w i e (data) e (fit) w i e (data) e (fit)
0.0 10.0 .000214 .000212 0.0 30.0 .001755 .001777
' 10.0 10.0 .000155 .000153 10.0 30.0 .001248 .001246
20.0 10.0 .000133 .000131 20.0 30.0 .001068 .001065
30.0 10.0 .000122 .000120 30.0 30.0 .001000 .000977
I 40.0 10.0 .000118 .000116 40.0 30.0 .000940 .000936
50.0 10.0 .000118 .000116 50.0 30.0 .000940 .000936
60.0 10.0 .000122 .000120 60.0 30.0 .001000 .000977
70.0 10.0 .000133 .000131 70.0 30.0 .001068 .001066
' 80.0 10.0 .000155 .000153 80.0 30.0 .001248 .001246
30.0 10.0 .000214 .000212 90.0 30.0 .001767 .001789
100.0 10.0 .000155 .000153 100.0 30.0 .001248 .001246
110.0 10.0 .000133 .000131 110.0 30.0 .001068 .001066
' 120.0 10.0 .000122 .000120 120.0 30.0 .001000 .000977
130.0 10.0 .000118 .000116 130.0 30.0 .000940 .000936
140.0 10.0 .000118 .000116 140.0 30.0 .000940 .000936
l 150.0 10.0 .000122 .000120 150.0 30.0 .001000 .000977
160.0 10.0 .000133 .000131 160.0 30.0 .001068 .001065
170.0 10.0 .000155 .000153 170.0 30.0 .001248 .001246
l 180.0 10.0 .000214 .000212 180.6 30.0 .001755 .001777
0.0 50.0 .004201 .004225 0.0 70.0 .006373 .006346
10.0 50.0 .002921 .002926 10.0 70.0 .004389 .004393
l 20.0 50.0 .002492 .002491 20.0 70.0 .003737 .003739
30.0 50.0 .002280 .002275 30.0 70.0 .003415 .003417
40.0 50.0 .002188 .002183 40.0 70.0 .003277 .003278
50.0 50.0 .002188 .002182 50.0 70.0 .003277 .003277
l 60.0 50.0 .002280 .002276 60.0 70.0 .003415 .003417
70.0 50.0 .002492 .002491 70.0 70.0 .003737 .003738
80.0 50.0 .002921 .002926 80.0 70.0 .004389 .004394
' 90.0 50.0 .004272 .004295 90.0 70.0 .006538 .006511
100.0 50.0 .002921 .002926 100.0 70.0 .004389 .004394
110.0 50.0 .002492 .002491 110.0 70.0 .003737 .003738
120.0 50.0 .002280 .002276 120.0 70.0 .003415 .003417
l 130.0 50.0 .002188 .002182 130.0 70.0 .003277 .003277
140.0 50.0 .002188 .002183 140.0 70.0 .003277 .003278
150.0 50.0 .002280 .002275 150.0 70.0 .003415 .003417
160.0 50.0 .002492 .002491 160.0 70.0 .003737 .003739
' 170.0 50.0 .002921 .002926 170.0 70.0 .004389 .004393
180.0 50.0 .004201 .004225 180.0 70.0 .006373 .006346
l 0.0 90.0 .007092 .007166 100.0 90.0 .004969 .004964
10.0 90.0 .004969 .004964 110.0 90.0 .004227 .004228
20.0 90.0 .004227 .004228 120.0 90.0 .003861 .003865
36.0 90.0 .003861 .003864 130.0 90.0 .003704 .003708
I 40.0 90.0 .003704 .003709 140.0 90.0 .003704 .003709
50.0 90.0 .003704 .003708 150.0 90.0 .003861 .003864
60.0 90.0 .003861 .003865 160.0 90.0 .004227 .004228
' 70.0 90.0 .004227 .004228 170.0 90.0 .004969 .004964
80.0 90.0 .004969 .004964 180.0 90.0 .007092 .007166
90.0 90.0 .007296 .007379
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